A New Approach to the Approximation of Common Fixed Points of an Infinite Family of Relatively Quasinonexpansive Mappings with Applications
نویسنده
چکیده
and Applied Analysis 3 where 〈·, ·〉 denotes the pairing between E and E∗. Readers are directed to 7 and its review 8 , where the properties of the duality mapping and several related topics are presented. The function φ : E × E → R is defined by φ ( x, y ) ‖x‖ − 2〈x, Jy〉 ∥∥y∥∥2, ∀x, y ∈ E. 1.7 Let T be a mapping from C into E. A point p in C is said to be an asymptotic fixed point 9 of T ifC contains a sequence {xn}which converges weakly to p and limn→∞ xn−Txn 0. The set of asymptotic fixed points of T is denoted by F̂ T . We say that the mapping T is relatively nonexpansive see 10 if the following conditions are satisfied: R1 F T / ∅; R2 φ p, Tx ≤ φ p, x , ∀p ∈ F T ;
منابع مشابه
A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces
In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.
متن کاملStrong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملWeak and strong convergence theorems for a finite family of generalized asymptotically quasinonexpansive nonself-mappings
In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.
متن کاملNew hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces
In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...
متن کاملNonexpansive mappings on complex C*-algebras and their fixed points
A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...
متن کاملApproximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014